skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Klotzbach, Philip J"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Landsea, C (Ed.)
    Abstract Since 1900, landfalling hurricanes have been the costliest of all weather-related disasters to afflict the contiguous United States. To provide a present-day (2022) reevaluation of this risk, this study employs an improved normalization approach to better understand potential economic event losses in the context of contemporary societal conditions. The updated methodology identifies impacted coastal counties using the newly available radius of maximum winds at landfall. Hurricane Katrina is the most expensive hurricane since 1900, with a likely 2022 normalized cost of $234 billion. Combined losses from the 50 most expensive hurricane events are ∼ $2.9 trillion in normalized economic losses. The study also explores some “analog storms” where comparisons can be made between two historic storms with similar landfall locations. For example, category 5 Andrew (1992) has lower 2022 normalized losses than category 4 Great Miami (1926), at $125 billion versus $178 billion, most likely due to the significantly different radius of maximum wind size (10 vs 20 n mi; 1 n mi = 1.852 km). As with previous studies, we conclude that increases in inflation, coastal population, regional wealth, and higher replacement costs remain the primary drivers of observed increases in hurricane-related damage. These upsurges are especially impactful for some coastal regions along the U.S. Gulf and Southeast Coasts that have seen exceptionally high rates of population/housing growth in comparison to countrywide growth. Exposure growth trends are likely to continue in the future and, independent of any influence of climate change on tropical cyclone behavior, are expected to result in greater hurricane-related damage costs than have been previously observed. 
    more » « less
    Free, publicly-accessible full text available January 1, 2026
  2. Abstract The 2023 Atlantic hurricane season was above normal, producing 20 named storms, 7 hurricanes, 3 major hurricanes, and seasonal accumulated cyclone energy that exceeded the 1991–2020 average. Hurricane Idalia was the most damaging hurricane of the year, making landfall as a Category 3 hurricane in Florida, resulting in eight direct fatalities and 3.6 billion U.S. dollars in damage. The above-normal 2023 hurricane season occurred during a strong El Niño event. El Niño events tend to be associated with increased vertical wind shear across the Caribbean and tropical Atlantic, yet vertical wind shear during the peak hurricane season months of August–October was well below normal. The primary driver of the above-normal season was likely record warm tropical Atlantic sea surface temperatures (SSTs), which effectively counteracted some of the canonical impacts of El Niño. The extremely warm tropical Atlantic and Caribbean were associated with weaker-than-normal trade winds driven by an anomalously weak subtropical ridge, resulting in a positive wind–evaporation–SST feedback. We tested atmospheric circulation sensitivity to SSTs in both the tropical and subtropical Pacific and the Atlantic using the atmospheric component of the Community Earth System Model, version 2.3. We found that the extremely warm Atlantic was the primary driver of the reduced vertical wind shear relative to other moderate/strong El Niño events. The concentrated warmth in the eastern tropical Pacific in August–October may have contributed to increased levels of vertical wind shear than if the warming had been more evenly spread across the eastern and central tropical Pacific. 
    more » « less
  3. Abstract Assessing the role of anthropogenic warming from temporally inhomogeneous historical data in the presence of large natural variability is difficult and has caused conflicting conclusions on detection and attribution of tropical cyclone (TC) trends. Here, using a reconstructed long-term proxy of annual TC numbers together with high-resolution climate model experiments, we show robust declining trends in the annual number of TCs at global and regional scales during the twentieth century. The Twentieth Century Reanalysis (20CR) dataset is used for reconstruction because, compared with other reanalyses, it assimilates only sea-level pressure fields rather than utilize all available observations in the troposphere, making it less sensitive to temporal inhomogeneities in the observations. It can also capture TC signatures from the pre-satellite era reasonably well. The declining trends found are consistent with the twentieth century weakening of the Hadley and Walker circulations, which make conditions for TC formation less favourable. 
    more » « less
  4. Editors: Bartow-Gillies, E; Blunden, J.; Boyer, T. Chapter Editors: (Ed.)